Alternating conditional gradient method for convex feasibility problems

نویسندگان

چکیده

The classical convex feasibility problem in a finite dimensional Euclidean space consists of finding point the intersection two sets. In present paper we are interested particular instances this problem. First, assume to know how compute an exact projection onto one sets involved and other set is compact such that conditional gradient (CondG) method can be used for computing efficiently inexact on it. Second, both CondG projections them. We combine alternating with design new method, which seen as feasible version alternate method. proposed generates different sequences belonging each set, converge them whenever it not empty. If empty, then points respective whose distance between equal consideration. Numerical experiments provided illustrate practical behavior

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cyclic Block Conditional Gradient Method for Convex Optimization Problems

In this paper we study the convex problem of optimizing the sum of a smooth function and a compactly supported non-smooth term with a specific separable form. We analyze the block version of the generalized conditional gradient method when the blocks are chosen in a cyclic order. A global sublinear rate of convergence is established for two different stepsize strategies commonly used in this cl...

متن کامل

Alternating Proximal Gradient Method for Convex Minimization

In this paper, we propose an alternating proximal gradient method that solves convex minimization problems with three or more separable blocks in the objective function. Our method is based on the framework of alternating direction method of multipliers. The main computational effort in each iteration of the proposed method is to compute the proximal mappings of the involved convex functions. T...

متن کامل

Conditional Gradient Sliding for Convex Optimization

In this paper, we present a new conditional gradient type method for convex optimization by utilizing a linear optimization (LO) oracle to minimize a series of linear functions over the feasible set. Different from the classic conditional gradient method, the conditional gradient sliding (CGS) algorithm developed herein can skip the computation of gradients from time to time, and as a result, c...

متن کامل

Universal gradient methods for convex optimization problems

In this paper, we present new methods for black-box convex minimization. They do not need to know in advance the actual level of smoothness of the objective function. Their only essential input parameter is the required accuracy of the solution. At the same time, for each particular problem class they automatically ensure the best possible rate of convergence. We confirm our theoretical results...

متن کامل

Conditional gradient algorithms for norm-regularized smooth convex optimization

Motivated by some applications in signal processing and machine learning, we consider two convex optimization problems where, given a cone K , a norm ‖ · ‖ and a smooth convex function f , we want either (1) to minimize the norm over the intersection of the cone and a level set of f , or (2) to minimize over the cone the sum of f and a multiple of the norm. We focus on the case where (a) the di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Optimization and Applications

سال: 2021

ISSN: ['0926-6003', '1573-2894']

DOI: https://doi.org/10.1007/s10589-021-00293-4